5 research outputs found

    Orienting Future Trends in Local Ancestry Deconvolution Models to Optimally Decipher Admixed Individual Genome Variations

    Get PDF
    Rapid advances in sequencing and genotyping technologies have significantly contributed to shaping the area of medical and population genetics. Several thousand genomes are completed with millions of variants identified in the human deoxyribonucleic acid (DNA) sequences. These genomic variations highly influence changes in phenotypic manifestations and physiological functions of different individuals or population groups. Of particular importance are variations introduced by admixture event, contributing significantly to a remarkable phenotypic variability with medical and/or evolutionary implications. In this case, knowledge of local ancestry estimates and date of admixture is of utmost importance for a better understanding of genomic variation patterns throughout modern human evolution and adaptive processes. In this chapter, we survey existing local ancestry deconvolution and dating admixture event models to identify possible gaps that still need to be filled and orient future trends in designing more effective models, which account for current challenges and produce more accurate and biological relevant estimates

    A post-gene silencing bioinformatics protocol for plant-defence gene validation and underlying process identification: case study of the Arabidopsis thaliana NPR1

    Get PDF
    Advances in forward and reverse genetic techniques have enabled the discovery and identification of several plant defence genes based on quantifiable disease phenotypes in mutant populations. Existing models for testing the effect of gene inactivation or genes causing these phenotypes do not take into account eventual uncertainty of these datasets and potential noise inherent in the biological experiment used, which may mask downstream analysis and limit the use of these datasets. Moreover, elucidating biological mechanisms driving the induced disease resistance and influencing these observable disease phenotypes has never been systematically tackled, eliciting the need for an efficient model to characterize completely the gene target under consideration

    Designing Data-Driven Learning Algorithms: A Necessity to Ensure Effective Post-Genomic Medicine and Biomedical Research

    Get PDF
    Advances in sequencing technology have significantly contributed to shaping the area of genetics and enabled the identification of genetic variants associated with complex traits through genome-wide association studies. This has provided insights into genetic medicine, in which case, genetic factors influence variability in disease and treatment outcomes. On the other side, the missing or hidden heritability has suggested that the host quality of life and other environmental factors may also influence differences in disease risk and drug/treatment responses in genomic medicine, and orient biomedical research, even though this may be highly constrained by genetic capabilities. It is expected that combining these different factors can yield a paradigm-shift of personalized medicine and lead to a more effective medical treatment. With existing “big data” initiatives and high-performance computing infrastructures, there is a need for data-driven learning algorithms and models that enable the selection and prioritization of relevant genetic variants (post-genomic medicine) and trigger effective translation into clinical practice. In this chapter, we survey and discuss existing machine learning algorithms and post-genomic analysis models supporting the process of identifying valuable markers

    Investigating local ancestry inference models in mixed ancestry individual genomes

    Get PDF
    Owing to historical events including the slave trade, agricultural interests, colonialism, and political and/or economical instability, most modern humans are a mosaic of segments originating from different populations. They result from the interbreeding of two or more previously isolated populations, leading to admixture. Known admixed populations include the mixed ancestry of South Africa, Latin Americans and African Americans. Admixed individuals play important roles in understanding population history, disease aetiology, and personal genomics. Accordingly, efforts have been made to understand the genetic composition of such individuals, yielding several models that infer the ancestry of every chromosomal segment in admixed individuals (local ancestry). However, new research questions emerged concerning model statistical and biological parameters, as well as the performance of these models across admixed datasets. This elicited the need for examining existing local ancestry inference models in order to identify and tackle critical issues of these models, which is the main goal of this thesis. We achieve this in four steps, constituting the main contributions of this PhD project: (1) Qualitative assessment of existing models through a systematic review; (2) Building a unified framework integrating existing models for inferring and assessing local ancestry estimates; (3) Quantitative assessment of existing methods within the same framework; and (4) Proposing a model extension to account for natural selection and the origin of modern humans to improve the accuracy of local ancestry estimates. Firstly, we assess models using published results on different datasets and performance measures, to orient modellers and software developers on the future trends in local ancestry inference. Secondly, to address the challenges identified in (1) including model complexity reflected in the distinct inputs each model requires and outputs formats, we design a unified framework, referred to as FRANC, to manipulate tool-specific inputs, deconvolve ancestry and standardise outputs, to ease the inference process and pave the way for model assessment. Thirdly, using FRANC, we assess the performance of eight state-of-the-art models on simulated admixed population datasets involving three and five ancestral populations. LAMP-LD and LOTER performed better than the other six tested models on admixed populations involving five ancestral populations while RFMIX, WINPOP, ELAI and LAMP-LD were comparable in admixed datasets involving three populations. Performance was evaluated based on performance measures borrowed from the machine learning confusion matrix. Finally, we noted that it may be more practical to extend existing models to incorporate more realistic biological assumptions. Hence, we propose a nonparametric hidden Markov model, that adjusts an existing model mSPECTRUM to account for natural selection and state-persistence when deconvolving local ancestry, which should improve the accuracy of estimates. Similarly to mSPECTRUM, this acknowledges the two common hypotheses on the origin of modern humans, making it comparable to mSPECTRUM which has been shown to be competitive with HAPMIX, a benchmark for two-way admixtures. Therefore, these four are a good contribution to admixture analysis of populations
    corecore